Major Research Questions

1. How does the cellulose synthase complex produce cellulose microfibrils?
2. What are the physicochemical interactions among cell wall components that lead to a strong network and what are the steps in their assembly?
3. How do macro-scale properties of cell walls (mechanics, porosity, thermal properties, etc.) emerge from nano-scale properties of cell wall components?

CLSLS Mission

To elucidate the nm-scale structure of bio-polymer networks in plant cell walls and their means of assembly, to provide a basis for improved conversion of biomass into fuels and improved biomaterials.

Network structure and properties

Genetic and enzymatic experiments determine how matrix components contribute to cell wall properties

Cellulose synthase (CESA) – a key protein within the CSC

Probing the structure and function of the cellulose synthesis machinery

A multi-protein cellulose synthase complex (CSC) within the plasma membrane produces cellulose fibrils

Cell wall architecture and dynamics

Visualizing cellulose fibril networks and changes after physical perturbation yields new insights into cell wall dynamics

Spectroscopy analyzes variations in cellulose structure within cell walls

CLSF Mission

To elucidate the nm-scale structure of bio-polymer networks in plant cell walls and their means of assembly, to provide a basis for improved conversion of biomass into fuels and improved biomaterials.